
University	College	of	Southeast	Norway	

http://home.hit.no/~hansha	

	

	

	

	

	

	

	

	

Control	Theory	
with	MathScript	Examples	

Hans-Petter	Halvorsen,	2016.10.26	

	 	

	

	

ii	

	

Table	of	Contents	
Table	of	Contents	..	ii	

1	 Introduction	..	1	

1.1	 MathScript	...	1	

2	 MathScript	Basics	...	2	

2.1	 Introduction	...	2	

2.2	 How	do	you	start	using	MathScript?	...	2	

2.3	 Basic	Operations	..	3	

2.4	 Vectors	and	Matrices	..	4	

2.5	 Linear	Algebra	...	7	

2.6	 Plotting	..	8	

2.6.1	 Subplots	...	9	

2.7	 User-Defined	Functions	in	MathScript	..	12	

2.8	 Scripts	..	12	

2.9	 Flow	Control	..	15	

2.10	 Control	Design	in	MathScript	..	15	

3	 Transfer	Functions	..	17	

3.1	 Introduction	...	17	

3.1.1	 1.order	system	...	17	

3.1.2	 1.order	system	with	time-delay	..	18	

3.1.3	 2.order	system	...	18	

3.2	 MathScript	...	19	

3.3	 First	order	Transfer	Function	...	21	

3.3.1	 1.order	system	with	time-delay	..	23	

iii	 	 Table	of	Contents	 	

Control Theory with MathScript Examples

3.4	 Second	order	Transfer	Function	..	25	

3.5	 Simulation	...	26	

3.6	 Block	Diagrams	..	26	

3.7	 Analysis	of	Standard	Functions	..	27	

3.7.1	 Integrator	..	28	

3.7.2	 1.	order	system	..	30	

3.7.3	 2.	order	system	..	33	

4	 State-space	Models	..	35	

4.1	 Introduction	...	35	

4.2	 MathScript	...	36	

5	 Time-delay	and	Pade’-approximations	...	39	

5.1	 Introduction	...	39	

5.2	 MathScript	...	40	

6	 Stability	Analysis	...	45	

6.1	 Introduction	...	45	

6.2	 Poles	..	46	

6.3	 Feedback	Systems	...	49	

6.3.1	 Loop	Transfer	function	..	49	

6.3.2	 Tracking	transfer	function	...	50	

6.3.3	 Sensitivity	transfer	function	..	50	

6.3.4	 Characteristic	Polynomial	..	50	

7	 Frequency	Response	...	52	

7.1	 Introduction	...	52	

7.2	 MathScript	...	53	

7.3	 Examples	...	54	

7.4	 Standard	Transfer	functions	..	61	

7.4.1	 Amplifier	(Norwegian:	“Forsterker”):	..	61	

iv	 	 Table	of	Contents	 	

Control Theory with MathScript Examples

7.4.2	 Integrator	..	62	

7.4.3	 Derivator	..	63	

7.4.4	 1.	Order	system	...	64	

7.4.5	 2.	Order	system	...	65	

7.4.6	 Zero	part	(Norwegian:	“Nullpunktsledd”)	...	66	

7.4.7	 Time	delay	(Norwegian:	“Tidsforsinkelse”)	...	66	

8	 Frequency	response	Analysis	..	68	

8.1	 Introduction	...	68	

8.2	 MathScript	...	70	

9	 Stability	Analysis	in	the	Frequency	Domain	..	74	

9.1	 Introduction	...	74	

9.2	 MathScript	...	75	

Appendix	A	–	MathScript	Functions	..	80	

Basic	Functions	...	80	

Basic	Plotting	Functions	..	80	

Functions	used	for	Control	and	Simulation	..	81	

	

1	

		

1 Introduction	
This	document	presents	some	control	theory	and	lots	of	examples	of	how	you	may	implement	it	in	
MathScript.	

This	document	gives	an	introduction	to	the	following	topics:	

• Transfer	Functions	and	Block	Diagrams	
• State-Space	Models	
• Time-delay	and	Pade’	approximations	
• Frequency	Response	
• Frequency	Response	Analysis	
• Stability	Analysis	

MathScript	has	lots	of	built-in	functionality	for	these	applications.	In	each	chapter	we	will	give	a	short	
overview	to	the	theory	behind,	before	we	dig	into	the	MathScript	Examples.	Since	MathScript	is	
almost	identical	to	MATLAB,	you	can	use	MATLAB	instead	in	most	of	the	examples	shown.	

1.1 MathScript	
MathScript	is	a	high-level,	text-	based	programming	language.	MathScript	includes	more	than	800	
built-in	functions	and	the	syntax	is	similar	to	MATLAB.	You	may	also	create	custom-made	m-file	like	
you	do	in	MATLAB.	

MathScript	is	well	suited	for	practical	implementations	of	control	theory.	

MathScript	(LabVIEW	MathScript	RT	Module)	is	an	add-on	module	to	LabVIEW	but	you	don’t	need	to	
know	LabVIEW	programming	in	order	to	use	MathScript,	because	MathScript	is	a	text-based	
language	similar	to	MATLAB.	

For	more	information	about	MathScript,	please	read	the	Tutorial	“LabVIEW	MathScript”	
(http://home.hit.no/~hansha/?tutorial=mathscript).	

Additional	exercises	are	given	in	the	course	“So	You	Think	You	Can	MathScript”	
(http://home.hit.no/~hansha/?lab=mathscript).	 	

	

	

2	

		

2 MathScript	Basics	

2.1 Introduction	
MathScript	is	a	high-level,	text-	based	programming	language.	MathScript	includes	more	than	800	
built-in	functions	and	the	syntax	is	similar	to	MATLAB.	You	may	also	create	custom-made	m-file	like	
you	do	in	MATLAB.	

MathScript	is	an	add-on	module	to	LabVIEW	but	you	don’t	need	to	know	LabVIEW	programming	in	
order	to	use	MathScript.	

	

For	more	information	about	MathScript,	please	read	the	Tutorial	“LabVIEW	MathScript”.	

2.2 How	do	you	start	using	MathScript?	 	
You	need	to	install	LabVIEW	and	the	LabVIEW	MathScript	RT	Module.	When	necessary	software	is	
installed,	start	MathScript	by	open	LabVIEW:	

3	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

	

	

In	the	Getting	Started	window,	select	Tools	->	MathScript	Window...:	

	

2.3 Basic	Operations	
Variables:	

Variables	are	defined	with	the	assignment	operator,	“=”.	MathScript	is	dynamically	typed,	meaning	
that	variables	can	be	assigned	without	declaring	their	type,	and	that	their	type	can	change.	Values	
can	come	from	constants,	from	computation	involving	values	of	other	variables,	or	from	the	output	
of	a	function.	

Example:	

4	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

>> x = 17
x =
 17
>> x = 'hat'
x =
hat
>> x = [3*4, pi/2]
x =
 12.0000 1.5708
>> y = 3*sin(x)
y =
 -1.6097 3.0000

[End	of	Example]	

	

Note!	MathScript	is	case	sensitive!	The	variables	x	and	X	are	not	the	same.	

Note!	Unlike	many	other	languages,	where	the	semicolon	is	used	to	terminate	commands,	in	
MathScript	the	semicolon	serves	to	suppress	the	output	of	the	line	that	it	concludes.	

Try	the	following:	

>> a=5
a =
 5
>> a=6;
>>

As	you	see,	when	you	type	a	semicolon	(;)	after	the	command,	MathScript	will	not	respond.	

	

	

It	is	normal	it	enter	one	command	in	each	line,	like	this:	

x = [0:0.1:1];
y = sin(x)

But	we	can	also	enter	more	than	one	command	on	one	line:	

x = [0:0.1:1]; y = sin(x)

or:	

x = [0:0.1:1], y = sin(x)

2.4 Vectors	and	Matrices	
Vectors:	

5	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

Given	the	following	vector:	

𝑥 =
1
2
3
	

This	can	be	implemented	in	MathScript	like	this:	

x =[1 2 3]

	

The	“colon	notation”	is	very	useful	for	creating	vectors:	

	

Example:	

This	example	shows	how	to	use	the	colon	notation	creating	a	vector	and	do	some	calculations.	

	

	

Matrices:	

Given	the	following	matrix:	

6	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

𝐴 = 0 1
−2 −3 	

MathScript	Code:	

A=[0 1; -2 -3]

	

Given	the	following	matrix:	

𝐶 =
−1 2 0
4 10 −2
1 0 6

	

MathScript	Code:	

C=[-1 2 0; 4 10 -2; 1 0 6]

	

How	to	get	a	subset	of	a	matrix:	

→	Find	the	value	in	the	second	row	and	the	third	column	of	matrix	C:	

C(2,3)

This	gives:	

ans =
 -2

→	Find	the	second	row	of	matrix	C:	

C(2,:)

This	gives:	

ans =

 4 10 -2

	

→	Find	the	third	column	of	matrix	C:	

C(:,3)

This	gives:	

ans = 0

 -2

 6

7	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

Deleting	Rows	and	Columns:	

You	can	delete	rows	and	columns	from	a	matrix	using	just	a	pair	of	square	brackets	[].	 	

Example:	

Given	

𝐴 = 0 1
−2 −3 	

We	define	the	matrix	A:	

>>A=[0 1; -2 -3];

To	delete	the	second	column	of	a	matrix	A,	we	use:	

>>A(:,2) = []
A =
 0
 -2

[End	of	Example]	

2.5 Linear	Algebra	
Linear	algebra	is	a	branch	of	mathematics	concerned	with	the	study	of	matrices,	vectors,	vector	
spaces	(also	called	linear	spaces),	linear	maps	(also	called	linear	transformations),	and	systems	of	
linear	equations.	

MathScript	are	well	suited	for	Linear	Algebra.	Here	are	some	useful	functions	for	Linear	Algebra	in	
MathScript:	

Function	 Description	 Example	
rank	 Find	the	rank	of	a	matrix.	Provides	an	estimate	of	the	number	of	

linearly	independent	rows	or	columns	of	a	matrix	A.	
>>A=[1 2; 3 4]
>>rank(A)	

det	 Find	the	determinant	of	a	square	matrix	 >>A=[1 2; 3 4]
>>det(A)	

inv	 Find	the	inverse	of	a	square	matrix	 >>A=[1 2; 3 4]
>>inv(A)	

eig	 Find	the	eigenvalues	of	a	square	matrix	 >>A=[1 2; 3 4]
>>eig(A)	

ones	 Creates	an	array	or	matrix	with	only	ones	 >>ones(2)
>>ones(2,1)	

eye	 Creates	an	identity	matrix	 >>eye(2)	

diag	 Find	the	diagonal	elements	in	a	matrix	 >>A=[1 2; 3 4]
>>diag(A)	

Type	“help	matfun”	(Matrix	functions	-	numerical	linear	algebra)	in	the	Command	Window	for	more	
information,	or	type	“help	elmat”	(Elementary	matrices	and	matrix	manipulation).	

You	may	also	type	“help	<functionname>”	for	help	about	a	specific	function.

8	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

2.6 Plotting	
MathScript	has	lots	of	functionality	for	Plotting.	The	simplest	and	most	used	is	the	plot	function.	

Example:	

>>t=[0:0.1:10];
>>y=cos(t);
>>plot(t,y)

This	gives	the	following	plot:	

	

[End	of	Example]	

	

MathScript	has	lots	of	built-in	functions	for	plotting:	

Function	 Description	 Example	
plot	 Generates	a	plot.	plot(y)	plots	the	columns	of	y	against	the	

indexes	of	the	columns.	
>X = [0:0.01:1];
>Y = X.*X;
>plot(X, Y)

figure	 Create	a	new	figure	window	 >>figure
>>figure(1)	

subplot	 Create	subplots	in	a	Figure.	subplot(m,n,p)	or	subplot(mnp),	
breaks	the	Figure	window	into	an	m-by-n	matrix	of	small	axes,	
selects	the	p-th	axes	for	the	current	plot.	The	axes	are	counted	
along	the	top	row	of	the	Figure	window,	then	the	second	row,	
etc.	

>>subplot(2,2,1)	

grid	 Creates	grid	lines	in	a	plot.	
“grid	on”	adds	major	grid	lines	to	the	current	plot.	
“grid	off”	removes	major	and	minor	grid	lines	from	the	current	
plot.	

>>grid
>>grid on
>>grid off	

axis	 Control	axis	scaling	and	appearance.	“axis([xmin	xmax	ymin	
ymax])”	sets	the	limits	for	the	x-	and	y-axis	of	the	current	axes.	

>>axis([xmin xmax ymin ymax])
>>axis off
>>axis on	

title	 Add	title	to	current	plot	
title('string')	

>>title('this is a title')	

xlabel	 Add	xlabel	to	current	plot	 >> xlabel('time')

9	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

xlabel('string')	
ylabel	 Add	ylabel	to	current	plot	

ylabel('string')	
>> ylabel('temperature')

legend	 Creates	a	legend	in	the	corner	(or	at	a	specified	position)	of	the	
plot	

>> legend('temperature')

hold	 Freezes	the	current	plot,	so	that	additional	plots	can	be	overlaid	 >>hold on
>>hold off

	

Example:	

Here	we	see	some	examples	of	how	to	use	the	different	plot	functions:	

	

[Figure:	R.	C.	Dorf	and	R.	H.	Bishop,	Modern	Control	Systems,	Eleventh	Edition:	Pearson	Prentice	Hall]	

[End	of	Example]	

2.6.1 Subplots	

The	subplot	command	enables	you	to	display	multiple	plots	in	the	same	window	or	print	them	on	the	
same	piece	of	paper.	Typing	“subplot(m,n,p)”	partitions	the	figure	window	into	an	m-by-n	matrix	of	
small	subplots	and	selects	the	pth	subplot	for	the	current	plot.	The	plots	are	numbered	along	the	first	
row	of	the	figure	window,	then	the	second	row,	and	so	on.	 	

10	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

	

The	syntax	is	as	follows:	

subplot(m,n,p)

	

Example:	

x=0:0.1:2*pi;

subplot(2,1,1)
y=sin(x);
plot(x,y)

subplot(2,1,2)
z=cos(x);
plot(x,z)

This	gives	the	following	plot:	

11	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

	

[End	of	Example]	

	 	

12	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

2.7 User-Defined	Functions	in	MathScript	
MathScript	includes	more	than	800	built-in	functions	that	you	can	use	but	sometimes	you	need	to	
create	your	own	functions.	

To	define	your	own	function	in	MathScript,	use	the	following	syntax:	

function outputs = function_name(inputs)
% documentation
…

	

The	figure	below	illustrates	how	to	create	and	use	functions	in	MathScript:	

	

2.8 Scripts	
A	script	is	a	sequence	of	MathScript	commands	that	you	want	to	perform	to	accomplish	a	task.	When	
you	have	created	the	script	you	may	save	it	as	a	m-file	for	later	use.	

13	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

	

	

You	may	also	have	multiple	Script	Windows	open	at	the	same	time	by	selecting	“New	Script	Editor”	
in	the	File	menu:	

	

	

This	gives:	

14	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

	

	

	 	

15	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

2.9 Flow	Control	
You	may	use	different	loops	in	MathScript	

• For	loop	
• While	loop	

If	you	want	to	control	the	flow	in	your	program,	you	may	want	to	use	one	of	the	following:	

• If-else	statement	
• Switch	and	case	statement	

Example:	

function av = calc_average2(x)
%This function calculates the average of a vector x
N=length(x);
tot=0;
for i=1:N
 tot=tot+x(i);
end
av=tot;

[End	of	Example]	

2.10 Control	Design	in	MathScript	
Type	“help	cdt”	in	the	Command	Window	in	the	MathScript	environment.	The	LabVIEW	Help	window	
appears:	

16	 	 MathScript	Basics	 	

Control Theory with MathScript Examples

	

Use	the	Help	window	and	read	about	some	of	the	functions	available	for	control	design	and	
simulation.	

See	Appendix	A	for	a	list	of	some	of	the	most	used	functions	with	description	and	examples.	

	

	

17	

	

3 Transfer	Functions	
3.1 Introduction	
Transfer	functions	are	a	model	form	based	on	the	Laplace	transform.	Transfer	functions	are	very	
useful	in	analysis	and	design	of	linear	dynamic	systems.	

A	general	Transfer	function	is	on	the	form:	

𝐻 𝑆 =
𝑦(𝑠)
𝑢(𝑠)

	

Where	y	is	the	output	and	u	is	the	input.	

A	general	transfer	function	can	be	written	on	the	following	general	form:	

𝐻 𝑠 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟(𝑠)
𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑠)

=
𝑏=𝑠= + 𝑏=?@𝑠=?@ + ⋯+	𝑏@𝑠 + 𝑏C
𝑎D𝑠D + 𝑎D?@𝑠D?@ + ⋯+	𝑎@𝑠 + 𝑎C

	

The	Numerators	of	transfer	function	models	describe	the	locations	of	the	zeros	of	the	system,	while	
the	Denominators	of	transfer	function	models	describe	the	locations	of	the	poles	of	the	system.	

Below	we	will	learn	more	about	2	important	special	cases	of	this	general	form,	namely	the	1.order	
transfer	function	and	the	2.order	transfer	function.	

3.1.1 1.order	system	

A	1.order	transfer	function:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
	

	

Where	 𝐾	 is	the	Gain	and	 𝑇	 is	the	Time	constant.	

	

A	step	response	of	such	a	transfer	function	has	the	following	characteristics:	

	

18	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

3.1.2 1.order	system	with	time-delay	

A	1.order	transfer	function	with	time-delay	may	be	written	as:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
𝑒?GH	

A	step	response	of	such	a	transfer	function	has	the	following	characteristics:	

	

[Figure:	F.	Haugen,	Advanced	Dynamics	and	Control:	TechTeach,	2010]	

From	the	step	response	of	such	a	system	we	can	easily	find	 𝐾,	 𝑇	 and	 𝜏.	

More	about	time-delays	in	a	later	chapter.	

3.1.3 2.order	system	

19	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

A	2.order	transfer	function:	

𝐻 𝑠 =
𝐾

𝑠
𝜔C

K
+ 2𝜁 𝑠

𝜔C
+ 1

	

More	about	1.order	and	2.order	transfer	functions	later	in	this	chapter.	

3.2 MathScript	
MathScript	has	several	functions	for	creating	transfer	functions:	

Function	 Description	 Example	
tf	 Creates	system	model	in	transfer	function	form.	You	also	can	

use	this	function	to	state-space	models	to	transfer	function	
form.	

>num=[1];
>den=[1, 1, 1];
>H = tf(num, den)

Sys_order1	 Constructs	the	components	of	a	first-order	system	model	based	
on	a	gain,	time	constant,	and	delay	that	you	specify.	You	can	use	
this	function	to	create	either	a	state-space	model	or	a	transfer	
function	model,	depending	on	the	output	parameters	you	
specify.	

>K = 1;
>tau = 1;
>H = sys_order1(K, tau)

Sys_order2	 Constructs	the	components	of	a	second-order	system	model	
based	on	a	damping	ratio	and	natural	frequency	you	specify.	You	
can	use	this	function	to	create	either	a	state-space	model	or	a	
transfer	function	model,	depending	on	the	output	parameters	
you	specify.	

>dr = 0.5
>wn = 20
>[num, den] = sys_order2(wn, dr)
>SysTF = tf(num, den)

pid	 Constructs	a	proportional-integral-derivative	(PID)	controller	
model	in	parallel,	series,	or	academic	form.	Refer	to	the	
LabVIEW	Control	Design	User	Manual	for	information	about	
these	three	forms.	 	

>Kc = 0.5;
>Ti = 0.25;
>SysOutTF = pid(Kc, Ti,
'academic');

Given	the	general	transfer	function:	

𝐻 𝑠 =
𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑜𝑟(𝑠)
𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑠)

=
𝑏=𝑠= + 𝑏=?@𝑠=?@ + ⋯+	𝑏@𝑠 + 𝑏C
𝑎D𝑠D + 𝑎D?@𝑠D?@ + ⋯+	𝑎@𝑠 + 𝑎C

	

In	MathScript	we	can	define	such	a	transfer	function	using	the	built-in	tf	function	as	follows:	

num=[bm, bm_1, bm_2, … , b1, b0];
den=[an, an_1, an_2, … , a1, a0];
H = tf(num, den)

Example:	

1.	Given	the	following	transfer	function:	

𝐻(𝑠) =
2𝑠K + 3𝑠 + 4

5𝑠 + 9
	

MathScript	Code:	

num=[2, 3, 4];
den=[5, 9];
H = tf(num, den)

20	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

2.	Given	the	following	transfer	function:	

𝐻(𝑠) =
4𝑠O + 3𝑠 + 4
5𝑠K + 9

	

MathScript	Code:	

num=[4, 0, 0, 3, 4];
den=[5, 0, 9];
H = tf(num, den)

Note!	If	some	of	the	orders	are	missing,	we	just	put	in	zeros.	The	transfer	function	above	can	be	
rewritten	as:	

𝐻(𝑠) =
4𝑠O + 0 ∙ 𝑠Q + 0 ∙ 𝑠K + 3𝑠 + 4

5𝑠K + 0 ∙ 𝑠 + 9
	

	

3.	Given	the	following	transfer	function:	

𝐻(𝑠) =
7 + 3𝑠 + 2𝑠K

5𝑠 + 6𝑠K
	

We	need	to	rewrite	the	transfer	function	to	get	it	in	correct	orders:	

𝐻(𝑠) =
2𝑠K + 3𝑠 + 7
6𝑠K + 5𝑠

	

MathScript	Code:	

num=[2, 3, 7];
den=[6, 5, 0];
H = tf(num, den)

[End	of	Example]	

	

For	creating	more	complex	transfer	functions,	some	of	the	following	functions	are	useful:	

Function	 Description	 Example	
conv	 Computes	the	convolution	of	two	vectors	or	matrices.	Example:	

𝐻 𝑠 =
𝐾

2𝑠 + 1 (3𝑠 + 1)
	

>den1 = [2, 1];
>den2 = [3, 1];
>C = conv(den1, den2)

series	 Connects	two	system	models	in	series	to	produce	a	model	
SysSer	with	input	and	output	connections	you	specify.	Example:	

𝐻 𝑠 = 𝐻@ 𝑠 𝐻K(𝑠)	

>Hseries = series(H1,H2)

feedback	 Connects	two	system	models	together	to	produce	a	closed-loop	
model	using	negative	or	positive	feedback	connections	

>SysClosed = feedback(SysIn_1,
SysIn_2)

21	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

3.3 First	order	Transfer	Function	
A	first	order	transfer	function	is	given	on	the	form:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
	

Where	

𝐾	 is	the	Gain	

𝑇	 is	the	Time	constant	

In	the	time	domain	we	get	the	following	differential	equation	(using	Inverse	Laplace):	

𝑥 =
1
𝑇
(−𝑥 + 𝐾𝑢)	

We	can	draw	the	following	block	diagram	of	the	system:	

	

Example:	

We	will	use	the	tf	function	in	MathScript	to	define	the	transfer	function:	 	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
	

We	set	 𝐾 = 1	 and	 𝑇 = 1.	

MathScript	Code	using	the	tf	function:	

K=1;
T=1;
num=[K];
den=[T, 1];
H = tf(num, den)

We	enter	the	code	shown	above	in	the	Script	window	as	shown	below:	

22	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

MathScript	Code	using	the	sys_order1	function:	

K = 1;
T = 1;
H = sys_order1(K, T)

[End	of	Example]	

Step	Response:	

The	step	response	for	a	1.order	transfer	function	has	the	following	characteristics	(a	step	 𝑈	 at	 𝑡 =
0):	

	

The	time	constant	T	is	defined	as	the	time	where	the	response	reaches	63%	of	the	steady	state	value.	

Example:	

Given	the	following	1.order	transfer	function:	

𝐻 𝑠 =
1

𝑠 + 1
	

23	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

(𝐾 = 1, 𝑇 = 1)	

We	create	the	following	code	in	order	to	plot	the	step	response	for	this	system:	

K=1;
T=1;
num=[K];
den=[T, 1];
H = tf(num, den);
Step(H)

This	gives	the	following	step	response:	

	

[End	of	Example]	

3.3.1 1.order	system	with	time-delay	

A	1.order	system	with	time-delay	has	the	following	transfer	function:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
𝑒?GH	

	

In	the	time	domain	we	get	the	following	differential	equation	(using	Inverse	Laplace):	

𝑥 =
1
𝑇
(−𝑥 + 𝐾𝑢(𝑡 − 𝜏))	

We	can	draw	the	following	block	diagram	of	the	system:	

24	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

Step	Response:	

	

[Figure:	F.	Haugen,	Advanced	Dynamics	and	Control:	TechTeach,	2010]	

	

Example:	

𝐻 𝑠 =
1

2𝑠 + 1
𝑒?QH	

(𝐾 = 1, 𝑇 = 2, 𝜏 = 3)	

The	MathScript	code	becomes	(using	the	built-in	sys_order1	function):	

K = 1;
T = 2;
delay=3;

H = sys_order1(K, T, delay)

step(H)

The	plot	of	the	step	response	becomes:	

25	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

[End	of	Example]	

3.4 Second	order	Transfer	Function	
A	second	order	transfer	function	is	given	on	the	form:	

𝐻 𝑠 =
𝐾

𝑠
𝜔C

K
+ 2𝜁 𝑠

𝜔C
+ 1

	

Where	

𝐾 is	the	gain	

𝜁	 zeta	is	the	relative	damping	factor	

𝜔C[rad/s]	is	the	undamped	resonance	frequency.	

Example:	

Define	the	transfer	function	in	MathScript.	Set	 𝐾 = 1, 𝜁 = 1, 𝜔C = 1

Use	the	tf	function	or	the	sys_order2	function	in	MathScript	

MathScript	Code:	

num=[1];
den=[1, 2, 1];
H = tf(num, den)

26	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

or:	

dr = 1
wn = 1
[num, den] = sys_order2(wn, dr)
H = tf(num, den)

[End	of	Example]	

2.order	system	-	special	case:	When	 𝜻 > 0	 and	the	poles	are	real	and	distinct	we	have:	

𝐻 𝑠 =
𝐾

(𝑇@𝑠 + 1)(𝑇K𝑠 + 1)
	

We	see	that	this	system	can	be	considered	as	two	1.order	systems	in	series.	

𝐻 𝑠 = 𝐻@ 𝑠 𝐻@ 𝑠 =
𝐾

(𝑇@𝑠 + 1)
∙

1
(𝑇K𝑠 + 1)

=
𝐾

(𝑇@𝑠 + 1)(𝑇K𝑠 + 1)
	

3.5 Simulation	
MathScript	has	several	functions	used	for	simulation	purposes:	

Function	 Description	 Example	
plot	 Generates	a	plot.	plot(y)	plots	the	columns	of	y	against	the	

indexes	of	the	columns.	
>X = [0:0.01:1];
>Y = X.*X;
>plot(X, Y)

step	 Creates	a	step	response	plot	of	the	system	model.	You	also	can	
use	this	function	to	return	the	step	response	of	the	model	
outputs.	If	the	model	is	in	state-space	form,	you	also	can	use	this	
function	to	return	the	step	response	of	the	model	states.	This	
function	assumes	the	initial	model	states	are	zero.	If	you	do	not	
specify	an	output,	this	function	creates	a	plot.	

>num=[1,1];
>den=[1,-1,3];
>H=tf(num,den);
>t=[0:0.01:10];
>step(H,t);

lsim	 Creates	the	linear	simulation	plot	of	a	system	model.	This	
function	calculates	the	output	of	a	system	model	when	a	set	of	
inputs	excite	the	model,	using	discrete	simulation.	If	you	do	not	
specify	an	output,	this	function	creates	a	plot.	

>t = [0:0.1:10]
>u = sin(0.1*pi*t)'
>lsim(SysIn, u, t)

Plots	functions:	Here	are	some	useful	functions	for	creating	plots:	plot,	figure,	subplot,	grid,	axis,	
title,	xlabel,	ylabel,	semilogx	–	for	more	information	about	the	plots	function,	type	“help	plots”.	Or	
type	“help	<functionname>”.	

3.6 Block	Diagrams	
MathScript	have	built-in	functions	for	manipulating	block	diagrams	and	transfer	functions.	

Serial:	

27	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

MathScript:	

…
H = series(h1,h2)

	

Parallel:	

	

MathScript:	

…
H = parallel(h1,h2)

	

Feedback:	

	

MathScript:	

…
H = feedback(h1,h2)

3.7 Analysis	of	Standard	Functions	
Here	we	will	take	a	closer	look	at	the	following	standard	functions:	

28	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

• Integrator	
• 1.	Order	system	
• 2.	Order	system	

3.7.1 Integrator	

The	transfer	function	for	an	Integrator	is	as	follows:	

𝐻 𝑠 =
𝐾
𝑠
	

Pole(s):	

The	Integrator	has	a	pole	in	origo:	 𝑝 = 0	

	

In	MathScript	you	may	use	the	poles	function	in	order	to	find	the	poles.	

Example:	

K=1;
T=1;
num=[K];
den=[T 1];
H=tf(num,den);
p=poles(H)

[End	of	Example]	

Step	response:	

Note!	In	MathScript	we	can	use	the	step	function	for	this	purpose.	

Here	we	will	find	the	mathematical	expression	for	the	step	response	(𝒚(𝒕)):	

The	Laplace	Transformation	pair	for	a	step	is	as	follows:	

1
𝑠
⇔ 1 	

	

The	step	response	of	an	integrator	then	becomes:	

Im(s)	

Re(s)	

29	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

𝑦 𝑠 = 𝐻 𝑠 𝑢 𝑠 =
𝐾
𝑠
∙
𝑈
𝑠
= 𝐾𝑈

1
𝑠K
	

We	use	the	following	Laplace	Transformation	pair	in	order	to	find	 𝑦(𝑡):	

1
𝑠K
⇔ 𝑡 	

Then	we	get:	

𝑦 𝑡 = 𝐾𝑈𝑡	

→	We	see	that	the	step	response	of	the	integrator	is	a	Ramp.	

Conclusion:	A	bigger	K	will	give	a	bigger	slope	(In	Norwegian:	“stigningstall”)	and	the	integration	will	
go	faster.	The	simulation	in	MathScript	below	will	also	show	this.	

Below	we	will	show	this	by	using	the	step	function	in	MathScript:	

Example:	

In	MathScript	we	use	the	step	function	for	simulation	of	a	step	response.	We	set	K=0.2,	1,	5.	 	

MathScript	Code:	

t=[0:0.5:5];
K=0.2
num=[K];
den=[1 0];
H1=tf(num,den);

K=1
num=[K];
den=[1 0];
H2=tf(num,den);

K=5
num=[K];
den=[1 0];
H3=tf(num,den);

step(H1,H2,H3,t)
axis([0, 5, 0, 5])

Note!	Using	a	For	Loop	in	this	case	would	be	a	better	approach.	

Plot:	

30	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

[End	of	Example]	

3.7.2 1.	order	system	

The	transfer	function	for	a	1.order	system	is	as	follows:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
	

Pole(s):	

A	1.order	system	has	a	pole:	 𝑝 = − @
[
	

	

In	MathScript	you	may	use	the	poles	function	in	order	to	find	the	poles.	The	function	pzgraph	plots	
the	poles	and	zeros	

Step	response:	

Note!	In	MathScript	we	can	use	the	step	function	for	this	purpose.	

Here	we	will	find	the	mathematical	expression	for	the	step	response	(𝒚(𝒕)):	

𝑦 𝑠 = 𝐻 𝑠 𝑢(𝑠)	

Im(s)	

Re(s)	
-1/T	

31	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

Where	 	

𝑢 𝑠 =
𝑈
𝑠
	

We	use	inverse	Laplace	and	find	the	corresponding	transformation	pair	in	order	to	find	 𝑦(𝑡)).	 	

𝑦 𝑠 =
𝐾

𝑇𝑠 + 1
∙
𝑈
𝑠
	

We	use	the	following	Laplace	transform	pair:	

𝑘
𝑇𝑠 + 1 𝑠

	⇔ 𝑘(1 − 𝑒?]/[) 	

This	gives:	

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒?]/[)	

The	step	response	is	as	follows:	

	

Below	we	will	show	this	by	using	the	step	function	in	MathScript:	

Example:	

For	different	values	for	K,	eg.,	K=0.5,	1,	2	and	T=1.	We	use	the	step	function	in	MathScript.	

t=[0:0.5:10];
den=[1 1];

K=0.5;
num=[K];
H1=tf(num,den);

32	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

K=1;
num=[K];
H2=tf(num,den);

K=2;
num=[K];
H3=tf(num,den);
step(H1,H2,H3,t);
axis([0, 10, 0, 2]);

Note!	Using	a	For	Loop	in	this	case	would	be	a	better	approach.	

Below	we	see	the	plot	for	this:	

	

	

[End	of	Example]	

Example:	

For	different	values	for	T:	T=0.2,	0.5,	1,	2,	4	and	K=1	

33	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

Note!	Using	a	For	Loop	in	this	case	would	be	a	better	approach.	

We	see	from	Figure	above	that	smaller	T	(Time	constant)	gives	faster	response.	

[End	of	Example]	

3.7.3 2.	order	system	

The	transfer	function	for	a	2.	order	system	is	as	follows:	

𝐻 𝑠 =
𝐾𝜔CK

𝑠K + 2𝜁𝜔C𝑠 + 𝜔CK
=

𝐾
𝑠
𝜔C

K
+ 2𝜁 𝑠

𝜔C
+ 1

	

Where	

• 𝐾 is	the	gain	
• 𝜁	 zeta	is	the	relative	damping	factor	
• 𝜔C[rad/s]	is	the	undamped	resonance	frequency.	

We	have	that:	

34	 	 Transfer	Functions	 	

Control Theory with MathScript Examples

	

Figure:	F.	Haugen,	Advanced	Dynamics	and	Control:	TechTeach,	2010.	

	

→	Show	this	in	MathScript	

	

Special	case:	When	 𝜻 > 0	 and	the	poles	are	real	and	distinct	we	have:	

𝐻 𝑠 =
𝐾

(𝑇@𝑠 + 1)(𝑇K𝑠 + 1)
	

We	see	that	this	system	can	be	considered	as	two	1.order	systems	in	series:	

𝐻 𝑠 = 𝐻@ 𝑠 𝐻@ 𝑠 =
𝐾

(𝑇@𝑠 + 1)
∙

1
(𝑇K𝑠 + 1)

=
𝐾

(𝑇@𝑠 + 1)(𝑇K𝑠 + 1)
	

	

	

35	

	

4 State-space	Models	

4.1 Introduction	
A	state-space	model	is	a	structured	form	or	representation	of	a	set	of	differential	equations.	
State-space	models	are	very	useful	in	Control	theory	and	design.	The	differential	equations	are	
converted	in	matrices	and	vectors,	which	is	the	basic	elements	in	MathScript.	

We	have	the	following	equations:	

	𝑥@ = 𝑎@@𝑥@ + 𝑎K@𝑥K + ⋯+ 𝑎D@𝑥D + 	𝑏@@𝑢@ + 𝑏K@𝑢K + ⋯+ 𝑏D@𝑢D	

⋮	

𝑥D = 𝑎@=𝑥@ + 𝑎K=𝑥K + ⋯+ 𝑎D=𝑥D +	𝑏@=𝑢@ + 𝑏K=𝑢K + ⋯+ 𝑏D@𝑢D	

⋮	

This	gives	on	vector	form:	

𝑥@
𝑥K
⋮
𝑥D
`

=
𝑎@@ ⋯ 𝑎D@
⋮ ⋱ ⋮

𝑎@= ⋯ 𝑎D=
b

𝑥@
𝑥K
⋮
𝑥D
`

+
𝑏@@ ⋯ 𝑏D@
⋮ ⋱ ⋮

𝑏@= ⋯ 𝑏D=
c

𝑢@
𝑢K
⋮
𝑢D
d

	

𝑦@
𝑦K
⋮
𝑦D
e

=
𝑐@@ ⋯ 𝑐D@
⋮ ⋱ ⋮
𝑐@= ⋯ 𝑐D=

g

𝑥@
𝑥K
⋮
𝑥D
`

+
𝑑@@ ⋯ 𝑑D@
⋮ ⋱ ⋮

𝑑@= ⋯ 𝑑D=
h

𝑢@
𝑢K
⋮
𝑢D
d

	

	

This	gives	the	following	compact	form	of	a	general	linear	State-space	model:	

𝑥 = 𝐴𝑥 + 𝐵𝑢	

𝑦 = 𝐶𝑥 + 𝐷𝑢	

Example:	

We	have	the	following	system:	

𝑥@ = 𝑥K	

36	 	 State-space	Models	 	

Control Theory with MathScript Examples

2𝑥K = −2𝑥@−6𝑥K+4𝑢@+8𝑢K	

𝑦 = 5𝑥@+6𝑥K+7𝑢@	

Convert	to	the	following	state-space	form:	

𝑥 = 𝐴𝑥 + 𝐵𝑢	

𝑦 = 𝐶𝑥 + 𝐷𝑢	

First	we	do:	

𝑥@ = 𝑥K	

𝑥K = −𝑥@−3𝑥K+2𝑢@+4𝑢K	

𝑦 = 5𝑥@+6𝑥K+7𝑢@	

This	gives:	

𝑥@
𝑥K

= 0 1
−1 −3

b

𝑥@
𝑥K + 0 0

2 4
c

𝑢@
𝑢K 	

𝑦 = 5 6
g

𝑥@
𝑥K + 7 0

h

𝑢@
𝑢K 	

→	Try	to	define	this	State-Space	model	in	MathScript.	

[End	of	Example]	

4.2 MathScript	
MathScript	has	several	functions	for	creating	state-space	models:	

Function	 Description	 Example	
ss	 Constructs	a	model	in	state-space	form.	You	also	can	use	this	

function	to	convert	transfer	function	models	to	state-space	
form.	

>A = [1 2; 3 4]
>B = [0; 1]
>C = B'
>SysOutSS = ss(A, B, C)

Sys_order1	 Constructs	the	components	of	a	first-order	system	model	based	
on	a	gain,	time	constant,	and	delay	that	you	specify.	You	can	use	
this	function	to	create	either	a	state-space	model	or	a	transfer	
function	model,	depending	on	the	output	parameters	you	
specify.	

>K = 1;
>tau = 1;
> [A, B, C, D] = sys_order1(K, tau)

Sys_order2	 Constructs	the	components	of	a	second-order	system	model	
based	on	a	damping	ratio	and	natural	frequency	you	specify.	You	
can	use	this	function	to	create	either	a	state-space	model	or	a	
transfer	function	model,	depending	on	the	output	parameters	
you	specify.	

>dr = 0.5
>wn = 20
>[A, B, C, D] = sys_order2(wn, dr)
>SysSS = ss(A, B, C, D)

	

Example:	

37	 	 State-space	Models	 	

Control Theory with MathScript Examples

Given	a	mass-spring-damper	system:	

	

Where	c=damping	constant,	m=mass,	k=spring	constant,	F=u=force	

The	state-space	model	for	the	system	is:	

𝑥@
𝑥K

=
0 1

−
𝑘
𝑚

−
𝑐
𝑚

𝑥@
𝑥K +

0
1
𝑚

𝑢	

𝑦 = 1 0
𝑥@
𝑥K 	

Define	the	state-space	model	above	using	the	ss	function	in	MathScript.	Set	some	arbitrary	values	for	
c=damping	constant,	m=mass,	k=spring	constant.	

We	will	use	MathScript	to	define	the	state	space	model:	

MathScript	Code:	

c=1;
m=1;
k=1;
A = [0 1; -k/m -c/m];
B = [0; 1/m];
C = [1 0];
SysOutSS = ss(A, B, C)

We	use	the	step	function	in	MathScript	in	order	to	simulate	the	step	response:	

38	 	 State-space	Models	 	

Control Theory with MathScript Examples

	

Try	with	different	values	of	c,	m	and	k	and	watch	the	results.	

[End	of	Example]	

	

	

	

	

	

	

39	

	

5 Time-delay	and	
Pade’-approximations	

5.1 Introduction	
Time-delays	are	very	common	in	control	systems.	The	Transfer	function	of	a	time-delay	is:	

𝐻 𝑠 = 𝑒?GH 	

A	1.order	transfer	function	with	time-delay	may	be	written	as:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
𝑒?GH	

	

In	some	situations	it	is	necessary	to	substitute	 𝑒?GH	 with	an	approximation,	e.g.,	the	
Padé-approximation:	

𝑒?GH ≈
1 − 𝑘@𝑠 + 𝑘K𝑠K + ⋯	± 𝑘D𝑠D

1 + 𝑘@𝑠 + 𝑘K𝑠K + ⋯+ 𝑘D𝑠D
	

	

Below	we	see	a	1.order	and	a	2.order	Padé-approximation:	

40	 	 Time-delay	and	Pade’-approximations	 	

Control Theory with MathScript Examples

	

5.2 MathScript	
MathScript	has	a	built-in	function	called	pade	for	creating	transfer	functions	for	time-delays:	

Function	 Description	 Example	
pade	 Incorporates	time	delays	into	a	system	model	using	the	Pade	

approximation	method,	which	converts	all	residuals.	You	must	
specify	the	delay	using	the	set	function.	You	also	can	use	this	
function	to	calculate	coefficients	of	numerator	and	denominator	
polynomial	functions	with	a	specified	delay.	

>[num, den] = pade(delay, order)
>[A, B, C, D] = pade(delay, order)

Sys_order1	 	 >K=4; T=3; delay=5;
>H = sys_order1(K, T, delay)

set	 	 >H = set(H1, 'inputdelay', delay);

series	 	 >H = series(H1,H2);

	

Example:	

Here	are	some	examples	of	how	to	use	the	pade	function:	

SysCon = zpk(1, 3.2, 6)
SysCon = set(SysCon, 'inputdelay', 6, 'outputdelay', 1.1)
SysDel = pade(SysCon, 2)

delay = 1.2
order = 3
[num, den] = pade(delay, order)

Or	her	is	an	alternative	without	using	the	pade	function:	

s=tf('s'); %Defines s to be the Laplace variable used in transfer functions
K=1; T=1; %Gain and time-constant

41	 	 Time-delay	and	Pade’-approximations	 	

Control Theory with MathScript Examples

H1=tf(K/(T*s+1)); %Creates H as a transfer function
delay=1; %Time-delay

H2=set(H1,'inputdelay',delay);%Defines H2 as H1 but with time-delay

figure(1) %Plot of simulated responses will shown in Figure 1
step(H1,H2) %Simulates with unit step as input, and plots responses.

[End	of	Example]	

	

Example:	

This	example	shows	Pade’	approximations	with	different	orders:	

	

[End	of	Example]	

	

If	we	have	a	1.order	system,	we	can	also	use	the	function	sys_order1().	

Example:	

Given	the	following	transfer	function:	

𝐻 𝑠 =
3

2𝑠 + 1
𝑒?OH	

We	define	the	transfer	function	using	sys_order1	with	the	following	code:	

K = 3;
T = 2;

42	 	 Time-delay	and	Pade’-approximations	 	

Control Theory with MathScript Examples

delay = 4;

H = sys_order1(K, T, delay)

In	addition	we	find	the	step	response:	

step(H)

This	gives	the	following	plot:	

	

We	know	that	a	step	response	of	such	a	transfer	function	has	the	following	characteristics:	

	

	

[Figure:	F.	Haugen,	Advanced	Dynamics	and	Control:	TechTeach,	2010]	

	

43	 	 Time-delay	and	Pade’-approximations	 	

Control Theory with MathScript Examples

So	we	can	easily	find	 𝐾,	 𝑇	 and	 𝜏	 from	the	graph:	

	

Another	way	to	define	 𝐻 𝑠 = Q
KHn@

𝑒?OH	 is	using	the	tf()	and	set()	functions:	

s = tf('s')
H1 = tf(K/(T*s+1));
H = set(H1, 'inputdelay', delay);

step(H)

We	can	also	combine	tf()	and	the	pade()	function	like	this:	

num = [K];
den = [T, 1];
H1 = tf(num, den);

order = 5;
H2 = pade(delay, order)
H = series(H1, H2)
step(H)

In	the	last	example	we	first	defined	the	transfer	function	 Q
KHn@

	 using	the	tf()	function,	then	we	

defined	the	time	delay	 𝑒?OH	 using	the	pade()	function.	Finally	we	have	combined	these	2	functions	
using	the	series()	function.	

In	the	last	example	we	get	the	following	plot:	

44	 	 Time-delay	and	Pade’-approximations	 	

Control Theory with MathScript Examples

	

[End	of	Example]	

45	

	

6 Stability	Analysis	
6.1 Introduction	
A	dynamic	system	has	one	of	the	following	stability	properties:	

• Asymptotically	stable	system	
• Marginally	stable	system	
• Unstable	system	

Below	we	see	the	behavior	of	these	3	different	systems	after	an	impulse	[F.	Haugen,	Advanced	
Dynamics	and	Control:	TechTeach,	2010]:	

Asymptotically	stable	system:	

	

lim
]→s

ℎ 𝑡 = 0	

Marginally	stable	system:	

	

0< lim
]→s

ℎ 𝑡 < ∞	

Unstable	system:	

	

lim
]→s

ℎ 𝑡 = ∞	

46	 	 Stability	Analysis	 	

Control Theory with MathScript Examples

6.2 Poles	
The	poles	are	important	when	analysis	the	stability	of	a	system.	The	figure	below	gives	an	overview	
of	the	poles	impact	on	the	stability	of	a	system:	

	

[Figure:	F.	Haugen,	Advanced	Dynamics	and	Control:	TechTeach,	2010]	

Thus,	we	have	the	following:	

Asymptotically	stable	system:	

	

Each	of	the	poles	of	the	transfer	function	lies	strictly	in	
the	left	half	plane	(has	strictly	negative	real	part).	

	

Marginally	stable	system:	

	

One	or	more	poles	lies	on	the	imaginary	axis	(have	real	
part	equal	to	zero),	and	all	these	poles	are	distinct.	
Besides,	no	poles	lie	in	the	right	half	plane.	

	

47	 	 Stability	Analysis	 	

Control Theory with MathScript Examples

Unstable	system:	 	

	

At	least	one	pole	lies	in	the	right	half	plane	(has	real	part	
greater	than	zero).	 	

	

	

Or:	There	are	multiple	and	coincident	poles	on	the	
imaginary	axis.	

	

Example:	double	integrator	 𝐻(𝑠) = @
Hw
	

Example:	

Given	the	following	system:	

𝐻 𝑠 =
𝑠 + 1

𝑠K − 𝑠 + 3
	

We	will	analyze	the	stability	of	this	system.	In	order	to	do	that	we	will	plot	the	step	response	and	find	
the	poles	for	this	system.	

We	start	by	defining	the	transfer	function	and	plotting	the	impulse	response:	

clear
clc

% Define Transfer Function
num=[1,1];
den=[1,-1,3];
H=tf(num,den);

% Step Response
t=[0:0.01:10];
impulse(H,t);

The	impulse	becomes:	

48	 	 Stability	Analysis	 	

Control Theory with MathScript Examples

	

→	From	the	plot	we	see	that	the	system	is	unstable.	 	

Next	we	find	the	poles	for	the	system:	

poles(H)
pzgraph(H)

The	poles	are	as	follows	(found	from	the	built-in	poles	function):	

0.5 + 1.6583i

0.5 - 1.6583i

We	have	also	used	the	built-in	pzgraph	function	in	order	to	plot	the	poles	(and	zeros):	

49	 	 Stability	Analysis	 	

Control Theory with MathScript Examples

	

→	We	see	from	the	plot	that	the	poles	(red	cross)	lies	in	the	right	half	plane	(has	real	part	greater	
than	zero)	and	that	there	are	multiple	poles	on	the	imaginary	axis,	which	indicate	that	the	system	is	
unstable.	

[End	of	Example]	

6.3 Feedback	Systems	
Here	are	some	important	transfer	functions	to	determine	the	stability	of	a	feedback	system.	Below	
we	see	a	typical	feedback	system.	

	

6.3.1 Loop	Transfer	function	

The	Loop	transfer	function	 𝑳(𝒔)	 (Norwegian:	“Sløyfetransferfunksjonen”)	is	defined	as	follows:	

𝐿 𝑠 = 𝐻{ 𝑠 𝐻|(𝑠)𝐻=(𝑠) 	

50	 	 Stability	Analysis	 	

Control Theory with MathScript Examples

Where	

𝐻{(𝑠)	 is	the	Controller	transfer	function	

𝐻|(𝑠)	 is	the	Process	transfer	function	

𝐻=(𝑠)	 is	the	Measurement	(sensor)	transfer	function	

Note!	Another	notation	for	 𝐿	 is	 𝐻C	

6.3.2 Tracking	transfer	function	

The	Tracking	transfer	function	 𝑻(𝒔)	 (Norwegian:	“Følgeforholdet”)	is	defined	as	follows:	

𝑇 𝑠 =
𝑦(𝑠)
𝑟(𝑠)

=
𝐻{𝐻|𝐻=

1 + 𝐻{𝐻|𝐻=
=

𝐿(𝑠)
1 + 𝐿(𝑠)

= 1 − 𝑆(𝑠) 	

The	Tracking	Property	(Norwegian:	“følgeegenskaper”)	is	good	if	the	tracking	function	T	has	value	
equal	to	or	close	to	1:	

𝑇 ≈ 1	

6.3.3 Sensitivity	transfer	function	

The	Sensitivity	transfer	function	 𝑺(𝒔)	 (Norwegian:	“Sensitivitetsfunksjonen/avviksforholdet”)	is	
defined	as	follows:	

𝑆 𝑠 =
𝑒(𝑠)
𝑟(𝑠)

=
1

1 + 𝐿(𝑠)
= 1 − 𝑇(𝑠) 	

The	Compensation	Property	is	good	if	the	sensitivity	function	S	has	a	small	value	close	to	zero:	

𝑆 ≈ 0	𝑜𝑟	 𝑆 ≪ 1	

Note!	

𝑇 𝑠 + 	𝑆 𝑠 =
𝐿(𝑠)

1 + 𝐿(𝑠)
+

1
1 + 𝐿(𝑠)

≡ 1 	

6.3.4 Characteristic	Polynomial	

We	have	that:	

𝐿 𝑠 =
𝑛�(𝑠)
𝑑�(𝑠)

	

And:	

51	 	 Stability	Analysis	 	

Control Theory with MathScript Examples

𝑇 𝑠 =
𝑦(𝑠)
𝑟(𝑠)

=
𝐿(𝑠)

1 + 𝐿(𝑠)
=

𝑛�(𝑠)
𝑑�(𝑠)

1 + 𝑛�(𝑠)
𝑑�(𝑠)

=
𝑛�(𝑠)

𝑑� 𝑠 + 𝑛�(𝑠)
	

	

Where	 𝑛�(𝑠)	 and	 𝑑� 𝑠 	 numerator	and	the	denominator	of	the	Loop	transfer	function	 𝐿(𝑠).	

The	Characteristic	Polynomial	for	the	control	system	then	becomes:	

𝑎(𝑠) = 𝑑� 𝑠 + 𝑛�(𝑠) 	

	

52	

	

7 Frequency	Response	
7.1 Introduction	
The	frequency	response	of	a	system	is	a	frequency	dependent	function	which	expresses	how	a	
sinusoidal	signal	of	a	given	frequency	on	the	system	input	is	transferred	through	the	system.	Each	
frequency	component	is	a	sinusoidal	signal	having	a	certain	amplitude	and	a	certain	frequency.	

The	frequency	response	is	an	important	tool	for	analysis	and	design	of	signal	filters	and	for	analysis	
and	design	of	control	systems.	The	frequency	response	can	be	found	experimentally	or	from	a	
transfer	function	model.	

We	can	find	the	frequency	response	of	a	system	by	exciting	the	system	with	a	sinusoidal	signal	of	
amplitude	A	and	frequency	ω	[rad/s]	(Note:	 𝜔 = 2𝜋𝑓)	and	observing	the	response	in	the	output	
variable	of	the	system.	 	

The	frequency	response	of	a	system	is	defined	as	the	steady-state	response	of	the	system	to	a	
sinusoidal	input	signal.	When	the	system	is	in	steady-state	it	differs	from	the	input	signal	only	in	
amplitude/gain	(A)	and	phase	lag	(𝜙).	 	

If	we	have	the	input	signal:	

𝑢 𝑡 = 𝑈	𝑠𝑖𝑛𝜔𝑡	

The	steady-state	output	signal	will	be:	

𝑦 𝑡 = 𝑈𝐴
�
	sin	(𝜔𝑡 + 𝜙)	

Where 𝐴 = �
�

 is the	ratio	between	the	amplitudes	of	the	output	signal	and	the	input	signal	(in	

steady-state).

A	and	 𝜙	 is	a	function	of	the	frequency	ω	so	we	may	write	 𝐴 = 𝐴 𝜔 , 𝜙 = 𝜙(𝜔)		

	

For	a	transfer	function	

𝐻 𝑆 =
𝑦(𝑠)
𝑢(𝑠)

	

We	have	that:	

𝐻 𝑗𝜔 = 𝐻(𝑗𝜔) 𝑒�∠�(��) 	

53	 	 Frequency	Response	 	

Control Theory with MathScript Examples

Where	 𝐻(𝑗𝜔)	 is	the	frequency	response	of	the	system,	i.e.,	we	may	find	the	frequency	response	by	
setting	 𝑠 = 𝑗𝜔	 in	the	transfer	function.	Bode	diagrams	are	useful	in	frequency	response	analysis.	
The	Bode	diagram	consists	of	2	diagrams,	the	Bode	magnitude	diagram,	 𝐴(𝜔)	 and	the	Bode	phase	
diagram,	 𝜙(𝜔).	

The	Gain	function:	

𝐴 𝜔 = 𝐻(𝑗𝜔) 	

The	Phase	function:	

𝜙 𝜔 = ∠𝐻(𝑗𝜔) 	

The	 𝐴(𝜔)-axis	is	in	decibel	(dB),	where	the	decibel	value	of	x	is	calculated	as:	 𝒙 𝒅𝑩 = 𝟐𝟎𝒍𝒐𝒈𝟏𝟎𝒙	

The	 𝜙(𝜔)-axis	is	in	degrees	(not	radians!)	

	

Here	you	will	learn	to	plot	the	frequency	response	in	a	Bode	diagram.	 	

Below	we	see	an	example	of	a	Bode	plot	created	in	MathScript:	

	

7.2 MathScript	
MathScript	has	several	functions	for	Frequency	responses:	

Function	 Description	 Example	
bode	 Creates	the	Bode	magnitude	and	Bode	phase	plots	of	a	system	

model.	You	also	can	use	this	function	to	return	the	magnitude	
and	phase	values	of	a	model	at	frequencies	you	specify.	If	you	

>num=[4];
>den=[2, 1];
>H = tf(num, den)
>bode(H)

54	 	 Frequency	Response	 	

Control Theory with MathScript Examples

do	not	specify	an	output,	this	function	creates	a	plot.	
bodemag	 Creates	the	Bode	magnitude	plot	of	a	system	model.	If	you	do	

not	specify	an	output,	this	function	creates	a	plot.	
>[mag, wout] = bodemag(SysIn)
>[mag, wout] = bodemag(SysIn, [wmin
wmax])
>[mag, wout] = bodemag(SysIn,
wlist)

margin	 Calculates	and/or	plots	the	smallest	gain	and	phase	margins	of	a	
single-input	single-output	(SISO)	system	model.	The	gain	margin	
indicates	where	the	frequency	response	crosses	at	0	decibels.	
The	phase	margin	indicates	where	the	frequency	response	
crosses	-180	degrees.	Use	the	margins	function	to	return	all	gain	
and	phase	margins	of	a	SISO	model.	

>num = [1]
>den = [1, 5, 6]
>H = tf(num, den)
margin(H)

margins	 Calculates	all	gain	and	phase	margins	of	a	single-input	
single-output	(SISO)	system	model.	The	gain	margins	indicate	
where	the	frequency	response	crosses	at	0	decibels.	The	phase	
margins	indicate	where	the	frequency	response	crosses	-180	
degrees.	Use	the	margin	function	to	return	only	the	smallest	
gain	and	phase	margins	of	a	SISO	model.	

>[gmf, gm, pmf, pm] = margins(H)

7.3 Examples	

Example:	

We	have	the	following	transfer	function	

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
1

𝑠 + 1
	

Below	we	see	the	script	for	creating	the	frequency	response	of	the	system	in	a	bode	plot	using	the	
bode	function	in	MathScript.	Use	the	grid	function	to	apply	a	grid	to	the	plot.	 	

% Transfer function H=1/(s+1)
num=[1];
den=[1, 1];
H = tf(num, den)
bode (H);

[End	of	Example]	

Example:	

I	this	example	we	will	use	3	different	methods	to	find	 𝐴	 and	 𝜙	 for	a	given	frequency	 𝜔.	

Given	the	following	system:	

𝐻 =
𝐾

𝑇𝑠 + 1
	

Set	 𝐾 = 1,	 𝑇 = 1	

The	input	signal	is	given	by:	

u t = U	sinωt 	

The	steady-state	output	signal	will	then	be:	

55	 	 Frequency	Response	 	

Control Theory with MathScript Examples

y t = UA
¢
	sin	(ωt + ϕ) 	

	

The	gain	is	given	by:	

𝐴 =
𝑌
𝑈
	

The	phase	lag	is	given	by:	

𝜙 = −𝜔Δ𝑡	[𝑟𝑎𝑑/𝑠] 	

	

Method	1:	We	create	a	MathScript	program	where	we	define	the	transfer	function	and	define	the	
input	signal	and	plot	it.	

We	will	then	use	the	lsim	function	is	MathScript	to	plot	the	output	signal	for	a	given	frequency,	 𝜔 =
1,	in	the	same	plot.	We	set	 𝑈 = 1	 in	this	example.	

The	following	code	will	do	this:	

% Define Transfer function
K = 1;
T = 1;
num = [K];
den = [T, 1];
H = tf(num, den);

% Define input signal
t = [1: 0.1 : 12];
w = 1;
U = 1;
u = U*sin(w*t);
figure(1)
plot(t, u)

% Output signal
hold on
lsim(H, 'r', u, t)
grid on
hold off
legend('input signal', 'output signal')

This	gives	the	following	plot	

56	 	 Frequency	Response	 	

Control Theory with MathScript Examples

	

From	the	plot	above	we	get	the	following	values:	

𝑌 = 0.68	

Δ𝑡 = 0.8	

We	use	the	following	Script	to	calculate	 𝐴©c	 and	 𝜙©ª«¬ªªH:	

% Values found from plot1 for w=1
Y = 0.68;
A = Y/U;
AdB = 20*log10(A)

dt = 0.8;
phi = -w*dt; %[rad]
phi_degrees = phi*180/pi %[degrees]

This	gives:	

𝐴 = 0.68, 𝐴©c = −3.35[𝑑𝐵]	

𝜙 = −0.8	𝑟𝑎𝑑, 𝜙©ª« = −45.9	𝑑𝑒𝑔𝑟𝑒𝑒𝑠	

	

Method	2:	Next	we	will	use	the	bode	function	to	plot	the	frequency	response/Bode	plot	to	see	if	we	
get	the	same	results.	

The	code	for	this	is:	

% Define Transfer function
K = 1;
T = 1;

57	 	 Frequency	Response	 	

Control Theory with MathScript Examples

num = [K];
den = [T, 1];
H = tf(num, den);

%Bode plot
figure(2)
bode(H)
subplot(2,1,1)
grid on
subplot(2,1,2)
grid on

This	gives:	

	

We	use	the	Bode	plot	to	find	 𝐴©c	 and	 𝜙©ª«¬ªªH	 for	 𝜔 = 1	

→	As	you	can	see	from	the	plot	above	we	get	the	same	results.	

	

Method	3:	Here	we	will	use	the	bode	function	to	calculate	the	exact	values	and	compare	with	the	
other	methods.	 	

The	MathScript	becomes:	

% Define Transfer function
K = 1;
T = 1;
num = [K];
den = [T, 1];
H = tf(num, den);

58	 	 Frequency	Response	 	

Control Theory with MathScript Examples

%Calculated magnitude and phase values for some given frequencies
wlist = [0.001, 0.01, 0.1, 1, 3, 5, 10, 100];
[mag, phase, wout] = bode(H, wlist);
magdB = 20*log10(mag)
phase

This	gives:	

magdB =
 -4.3429e-006
 -0.0004
 -0.0432
 -3.0103
 -10
 -14.1497
 -20.0432
 -40.0004
phase =

 -0.0573
 -0.5729
 -5.7106
 -45
 -71.5651
 -78.6901
 -84.2894
 -89.4271

→	we	get	the	same	results	here	also	(as	expected).	

[End	of	Example]	

	

Example:	

We	have	the	following	transfer	function:	

𝐻 𝑆 =
4

2𝑠 + 1
	

Break	frequency:	

𝜔 =
1
𝑇
=
1
2
= 0.5	

	

The	mathematical	expressions	for	 𝐴(𝜔)	 and	 𝜙(𝜔):	

𝐻(𝑗𝜔) ©c = 20𝑙𝑜𝑔4 − 20𝑙𝑜𝑔 (2𝜔)K + 1	

∠𝐻(𝑗𝜔) = −arctan	(2𝜔)	

59	 	 Frequency	Response	 	

Control Theory with MathScript Examples

Frequency	response	of	the	system	in	a	bode	plot	using	the	bode	function	in	MathScript:	

	

MathScript	Code:	

% Transfer function
num=[4];
den=[2, 1];
H = tf(num, den)
% Bode Plot
bode(H)
% Margins and Phases
wlist=[0.1, 0.16, 0.25, 0.4, 0.625,2.5];
[mag, phase,w] = bode(H, wlist);
magdB=20*log10(mag); %convert to dB
mag_data = [w, magdB]
phase_data = [w, phase]

This	gives:	

	

From	the	code	above	we	get	 𝐴(𝜔)	 and	 𝜙(𝜔)	 for	the	following	frequencies	using	MathScript	code:	

60	 	 Frequency	Response	 	

Control Theory with MathScript Examples

𝜔	 𝐴(𝜔)	 𝜙(𝜔)	

0.1	 11.9	 -11.3	

0.16	 11.6	 -17.7	

0.25	 11.1	 -26.5	

0.4	 9.9	 -38.7	

0.625	 7.8	 -51.3	

2.5	 -2.1	 -78.6	

	

We	find	 𝐴(𝜔)	 and	 𝜙(𝜔)	 for	the	same	frequencies	above	using	the	mathematical	expressions	for	
𝐴(𝜔)	 and	 𝜙(𝜔)	 and	a	For	Loop	in	MathScript.	We	define	a	vector	w=[0.1,	0.16,	0.25,	0.4,	0.625,	
2.5].	

	

→	We	see	the	results	are	the	same	as	the	result	found	using	the	bode	function.	

[End	of	Example]	

	 	

61	 	 Frequency	Response	 	

Control Theory with MathScript Examples

7.4 Standard	Transfer	functions	
Here	we	will	find	the	frequency	response	for	the	following	transfer	functions:	

• Amplifier	
• Integrator	
• Derivator	
• 1.order	system	
• 2.order	system	
• Zero-part	
• Time	delay	

7.4.1 Amplifier	(Norwegian:	“Forsterker”):	

The	transfer	function	for	an	Amplifier	is	as	follows:	

𝐻(𝑠) = 𝐾 	

Where	

𝐾 is	the	gain	

The	mathematical	expressions	for	 𝐴(𝜔)	 and	 𝜙(𝜔)	 is	as	follows:	

Gain:	

𝐴 𝜔 = 𝐻(𝑗𝜔) = 𝐾		

or	in	dB:	

𝐻(𝑗𝜔) ©c = 20𝑙𝑜𝑔𝐾		

Phase:	

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = 0	

Example:	

We	plot	the	Bode	plot	for	the	Amplifier	using	the	bode	function	in	MathScript	(K=1):	

	

62	 	 Frequency	Response	 	

Control Theory with MathScript Examples

	

→	We	see	that	both	 𝐴(𝜔)	 and	 𝜙(𝜔)	 are	independent	of	the	frequency	𝜔.	

[End	of	Example]	

7.4.2 Integrator	

The	transfer	function	for	an	Integrator	is	as	follows:	

	

𝐻 𝑠 =
𝐾
𝑠
	

Where	

𝐾 is	the	gain	

The	mathematical	expressions	for	 𝐴(𝜔)	 and	 𝜙(𝜔)	 is	as	follows:	

Gain:	

𝐴 𝜔 = 𝐻(𝑗𝜔) =
𝐾
𝜔
	

or	in	dB:	

𝐻(𝑗𝜔) ©c = 20𝑙𝑜𝑔
𝐾
𝜔
		

Phase:	

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = −
𝜋
2
𝑟𝑎𝑑 = −90°	

63	 	 Frequency	Response	 	

Control Theory with MathScript Examples

Example:	

We	plot	the	Bode	plot	for	the	Integrator	using	the	bode	function	in	MathScript:	

	

[End	of	Example]	

7.4.3 Derivator	

The	transfer	function	for	an	Derivator	is	as	follows:	

𝐻 𝑠 = 𝐾𝑠 	

Where	

𝐾 is	the	gain	

The	mathematical	expressions	for	 𝐴(𝜔)	 and	 𝜙(𝜔)	 is	as	follows:	

Gain:	

𝐴 𝜔 = 𝐻(𝑗𝜔) = 𝐾𝜔	

or	in	dB:	

𝐻(𝑗𝜔) ©c = 20𝑙𝑜𝑔𝐾𝜔	

Phase:	

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = +
𝜋
2
𝑟𝑎𝑑 = +90°	

Example:	

64	 	 Frequency	Response	 	

Control Theory with MathScript Examples

We	plot	the	Bode	plot	for	the	Derivator	using	the	bode	function	in	MathScript:	

	

[End	of	Example]	

7.4.4 1.	Order	system	

The	transfer	function	for	a	1.order	system	is	as	follows:	

𝐻 𝑠 =
𝐾

𝑇𝑠 + 1
	

Where	

𝐾 is	the	gain	

T	is	the	Time	constant	

The	mathematical	expressions	for	 𝐴(𝜔)	 and	 𝜙(𝜔)	 is	as	follows:	

𝐴 𝜔 = 𝐻(𝑗𝜔) =
𝐾

𝜔K𝑇K + 1
	

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = −arctan	(𝜔𝑇)	

	

	

Example:	

We	plot	the	Bode	plot	for	the	1.order	system	using	the	bode	function	in	MathScript:	

65	 	 Frequency	Response	 	

Control Theory with MathScript Examples

	

[End	of	Example]	

7.4.5 2.	Order	system	

The	transfer	function	for	a	2.order	system	is	as	follows:	

𝐻 𝑠 =
𝐾𝜔CK

𝑠K + 2𝜁𝜔C𝑠 + 𝜔CK
=

𝐾
𝑠
𝜔C

K
+ 2𝜁 𝑠

𝜔C
+ 1

	

Where	

𝐾 is	the	gain	

𝜁	 zeta	is	the	relative	damping	factor	

𝜔C[rad/s]	is	the	undamped	resonance	frequency.	

	

Example:	

We	plot	the	Bode	plot	for	the	2.order	system	using	the	bode	function	in	MathScript:	

	

66	 	 Frequency	Response	 	

Control Theory with MathScript Examples

	

[End	of	Example]	

7.4.6 Zero	part	(Norwegian:	“Nullpunktsledd”)	

The	transfer	function	for	a	Zero	part	system	is	as	follows:	

𝐻 𝑠 = 𝐾(𝑇𝑠 + 1) 	

Where	

𝐾 is	the	gain	

T	is	the	Time	constant	

The	mathematical	expressions	for	 𝐴(𝜔)	 and	 𝜙(𝜔)	 is	as	follows:	

Gain:	

𝐴 𝜔 = 𝐻(𝑗𝜔) = 𝐾 𝜔𝑇 K + 1	

or	in	dB:	

𝐻(𝑗𝜔) ©c = 20𝑙𝑜𝑔𝐾 𝜔𝑇 K + 1	

Phase:	

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = +arctan	(𝜔𝑇)	

	

7.4.7 Time	delay	(Norwegian:	“Tidsforsinkelse”)	

The	transfer	function	for	a	Time	Delay	is	as	follows:	

67	 	 Frequency	Response	 	

Control Theory with MathScript Examples

𝐻 𝑠 = 𝐾𝑒?GH 	

Where	

𝐾 is	the	gain	

𝜏	 is	the	time-delay	

The	mathematical	expressions	for	 𝐴(𝜔)	 and	 𝜙(𝜔)	 is	as	follows:	

Gain:	

𝐴 𝜔 = 𝐻(𝑗𝜔) = 𝐾	

Phase:	

𝜙 𝜔 = ∠𝐻 𝑗𝜔 = −𝜔𝜏		𝑟𝑎𝑑 = −𝜔𝜏
180
𝜋

𝑑𝑒𝑔𝑟𝑒𝑒𝑠			

Note!	

2𝜋	𝑟𝑎𝑑 = 360°	

𝜋	𝑟𝑎𝑑 = 180°	

Example:	

We	plot	the	Bode	plot	for	the	Time	delay	using	the	bode	function	in	MathScript:	

	

[End	of	Example]	

68	

	

8 Frequency	response	
Analysis	

8.1 Introduction	
Here	are	some	important	transfer	functions	to	determine	the	stability	of	a	feedback	system.	Below	
we	see	a	typical	feedback	system.	

	

The	Loop	transfer	function	 𝑳(𝒔)	 (Norwegian:	“Sløyfetransferfunksjonen”)	is	defined	as	follows:	

𝐿 𝑠 = 𝐻{𝐻|𝐻= 	

Where	

𝐻{ 	 is	the	Controller	transfer	function	

𝐻|	 is	the	Process	transfer	function	

𝐻=	 is	the	Measurement	(sensor)	transfer	function	

Note!	Another	notation	for	 𝐿	 is	 𝐻C	

	

The	Tracking	transfer	function	 𝑻(𝒔)	 (Norwegian:	“Følgeforholdet”)	is	defined	as	follows:	

𝑇 𝑠 =
𝑦(𝑠)
𝑟(𝑠)

=
𝐻{𝐻|𝐻=

1 + 𝐻{𝐻|𝐻=
=

𝐿(𝑠)
1 + 𝐿(𝑠)

= 1 − 𝑆(𝑠) 	

The	Tracking	Property	(Norwegian:	“følgeegenskaper”)	is	good	if	the	tracking	function	T	has	value	
equal	to	or	close	to	1:	

69	 	 Frequency	response	Analysis	 	

Control Theory with MathScript Examples

𝑇 ≈ 1	

The	Sensitivity	transfer	function	 𝑺(𝒔)	 (Norwegian:	“Sensitivitetsfunksjonen/avviksforholdet”)	is	
defined	as	follows:	

𝑆 𝑠 =
𝑒(𝑠)
𝑟(𝑠)

=
1

1 + 𝐿(𝑠)
= 1 − 𝑇(𝑠) 	

The	Compensation	Property	is	good	if	the	sensitivity	function	S	has	a	small	value	close	to	zero:	

𝑆 ≈ 0	𝑜𝑟	 𝑆 ≪ 1	

Note!	

𝑇 𝑠 + 	𝑆 𝑠 =
𝐿(𝑠)

1 + 𝐿(𝑠)
+

1
1 + 𝐿(𝑠)

≡ 1 	

	

Frequency	Response	Analysis	of	the	Tracking	Property:	

From	the	equations	above	we	find:	

The	Tracking	Property	(Norwegian:	“følgeegenskaper”)	is	good	if:	

𝐿(𝑗𝜔) ≫ 1	

The	Tracking	Property	(Norwegian:	“følgeegenskaper”)	is	poor	if:	

𝐿(𝑗𝜔) ≪ 1	

	

Bandwidths	 𝝎𝒕,𝝎𝒄, 𝝎𝒔	 (see	the	sketch	below)	

70	 	 Frequency	response	Analysis	 	

Control Theory with MathScript Examples

	

𝝎𝒄	 –	crossover-frequency	–	the	frequency	where	the	gain	of	the	Loop	transfer	function	 𝐿(𝑗𝜔)	 has	
the	value:	

1 = 0𝑑𝐵	

𝝎𝒕	 –	the	frequency	where	the	gain	of	the	Tracking	function	 𝑇(𝑗𝜔)	 has	the	value:	

1
2
≈ 0.71 = −3𝑑𝐵	

𝝎𝒔	 -	the	frequency	where	the	gain	of	the	Sensitivity	transfer	function	 𝑆(𝑗𝜔)	 has	the	value:	

1 −
1
2
≈ 0.29 = −11𝑑𝐵	

8.2 MathScript	
MathScript	has	several	functions	for	frequency	response	analysis:	

Function	 Description	 Example	
tf	 Creates	system	model	in	transfer	function	form.	You	also	can	

use	this	function	to	state-space	models	to	transfer	function	
form.	

>num=[1];
>den=[1, 1, 1];
>H = tf(num, den)

poles	 Returns	the	locations	of	the	closed-loop	poles	of	a	system	
model.	

>num=[1]
>den=[1,1]
>H=tf(num,den)
>poles(H)

tfinfo	 Returns	information	about	a	transfer	function	system	model.	 >[num, den, delay, Ts] =
tfinfo(SysInTF)

series	 Connects	two	system	models	in	series	to	produce	a	model	
SysSer	with	input	and	output	connections	you	specify	

>Hseries = series(H1,H2)

feedback	 Connects	two	system	models	together	to	produce	a	closed-loop	
model	using	negative	or	positive	feedback	connections	

>SysClosed = feedback(SysIn_1,
SysIn_2)

71	 	 Frequency	response	Analysis	 	

Control Theory with MathScript Examples

bode	 Creates	the	Bode	magnitude	and	Bode	phase	plots	of	a	system	
model.	You	also	can	use	this	function	to	return	the	magnitude	
and	phase	values	of	a	model	at	frequencies	you	specify.	If	you	
do	not	specify	an	output,	this	function	creates	a	plot.	

>num=[4];
>den=[2, 1];
>H = tf(num, den)
>bode(H)

bodemag	 Creates	the	Bode	magnitude	plot	of	a	system	model.	If	you	do	
not	specify	an	output,	this	function	creates	a	plot.	

>[mag, wout] = bodemag(SysIn)
>[mag, wout] = bodemag(SysIn, [wmin
wmax])
>[mag, wout] = bodemag(SysIn,
wlist)

margin	 Calculates	and/or	plots	the	smallest	gain	and	phase	margins	of	a	
single-input	single-output	(SISO)	system	model.	The	gain	margin	
indicates	where	the	frequency	response	crosses	at	0	decibels.	
The	phase	margin	indicates	where	the	frequency	response	
crosses	-180	degrees.	Use	the	margins	function	to	return	all	gain	
and	phase	margins	of	a	SISO	model.	

>num = [1]
>den = [1, 5, 6]
>H = tf(num, den)
margin(H)

margins	 Calculates	all	gain	and	phase	margins	of	a	single-input	
single-output	(SISO)	system	model.	The	gain	margins	indicate	
where	the	frequency	response	crosses	at	0	decibels.	The	phase	
margins	indicate	where	the	frequency	response	crosses	-180	
degrees.	Use	the	margin	function	to	return	only	the	smallest	
gain	and	phase	margins	of	a	SISO	model.	

>[gmf, gm, pmf, pm] = margins(H)

Example:	

Given	the	following	system:	

Process	transfer	function:	

𝐻| =
𝐾
𝑠
𝑒?GH	

Where	 𝐾 = µ́
¶b
,	where	 𝐾H = 0,556,	 𝐴 = 13,4,	 𝜚 = 145	 and	 𝜏 = 250	

Measurement	(sensor)	transfer	function:	

𝐻= = 𝐾=	

Where	Km	=	6,67	%/m.	

Controller	transfer	function	(PI	Controller):	

𝐻{ = 𝐾| +
𝐾|
𝑇 𝑠

	

Set	Kp	=	1,5	og	Ti	=	1000	sec.	

We	shall	find	the	Loop	transfer	function	 (𝒔)	 ,	Sensitivity	transfer	function	 𝑺(𝒔),	Tracking	transfer	
function	 𝑻(𝒔)	 using	the	series	and	feedback	functions	in	MathScript.	

MathScript	Code:	

%Calculating control system transfer functions:
L=series(Hc,series(Hp,Hs)); %Calculating loop tranfer function
T=feedback(L,1); %Calculating tracking transfer function
S=1-T; %Calculating sensitivity transfer function

	

72	 	 Frequency	response	Analysis	 	

Control Theory with MathScript Examples

We	plot	the	Bode	plot	for	L,	T	and	S	and	find	the	Bandwidths	 𝜔], 𝜔{, 𝜔H:	 	

MathScript	Code:	

bodemag(L,T,S), grid %Plots maginitude of L, T, and S in Bode diagram

Bode	plot	(Magnitude	only)	of	L,	T	and	S:	

	

We	find	the	stability	margins	(GM,	PM)	of	the	system	(𝐿(𝑠)):	

margin(L), grid %Plotting L and stability margins and crossover
frequencies in Bode diagram

Bode	plot	with	the	stability	margins	(GM,	PM)	marked	on	the	plot:	

73	 	 Frequency	response	Analysis	 	

Control Theory with MathScript Examples

	

[End	of	Example]	

74	

	

9 Stability	Analysis	in	the	
Frequency	Domain	

9.1 Introduction	
Gain	Margin	(GM)	and	Phase	Margin	(PM)	are	important	design	criteria	for	analysis	of	feedback	
control	systems.	

A	dynamic	system	has	one	of	the	following	stability	properties:	

• Asymptotically	stable	system	
• Marginally	stable	system	
• Unstable	system	

The	Gain	Margin	–	GM	(Δ𝐾)	is	how	much	the	loop	gain	can	increase	before	the	system	become	
unstable.	

The	Phase	Margin	-	PM	(𝜑)	is	how	much	the	phase	lag	function	of	the	loop	can	be	reduced	before	
the	loop	becomes	unstable.	

	

Where:	

75	 	 Stability	Analysis	in	the	Frequency	Domain	 	

Control Theory with MathScript Examples

• 𝝎𝟏𝟖𝟎	(gain	margin	frequency	-	gmf)	is	the	gain	margin	frequency/frequencies,	in	
radians/second.	A	gain	margin	frequency	indicates	where	the	model	phase	crosses	-180	
degrees.	 	 	

• GM	(Δ𝐾)	is	the	gain	margin(s)	of	the	system.	 	
• 𝝎𝒄	 (phase	margin	frequency	-	pmf)	returns	the	phase	margin	frequency/frequencies,	in	

radians/second.	A	phase	margin	frequency	indicates	where	the	model	magnitude	crosses	0	
decibels.	 	

• PM	(𝜑)	is	the	phase	margin(s)	of	the	system.	

Note!	 𝝎𝟏𝟖𝟎		 and	 𝝎𝒄	are	called	the	crossover-frequencies	

The	definitions	are	as	follows:	

Gain	Crossover-frequency	-	 𝝎𝒄	:	

	 𝐿 𝑗𝜔{ = 1 = 0𝑑𝐵 	

Phase	Crossover-frequency	-	 𝝎𝟏𝟖𝟎	:	

	∠𝐿 𝑗𝜔@»C = −180° 	

Gain	Margin	-	GM	(𝚫𝑲):	

𝐺𝑀 = @
� ��ÀÁÂ

	 	

or:	

	 𝐺𝑀	 𝑑𝐵 = − 𝐿 𝑗𝜔@»C 	 𝑑𝐵 	

Phase	margin	PM	(𝝋):	 	

𝑃𝑀 = 180° + 	∠𝐿(𝑗𝜔{)	

We	have	that:	

• Asymptotically	stable	system:	 𝝎𝒄 < 𝝎𝟏𝟖𝟎	
• Marginally	stable	system:	 𝝎𝒄 = 𝝎𝟏𝟖𝟎	
• Unstable	system:	 𝝎𝒄 > 𝝎𝟏𝟖𝟎	

9.2 MathScript	
MathScript	has	several	functions	for	stability	analysis:	

Function	 Description	 Example	
bode	 Creates	the	Bode	magnitude	and	Bode	phase	plots	of	a	system	

model.	You	also	can	use	this	function	to	return	the	magnitude	
and	phase	values	of	a	model	at	frequencies	you	specify.	If	you	
do	not	specify	an	output,	this	function	creates	a	plot.	

>num=[4];
>den=[2, 1];
>H = tf(num, den)
>bode(H)

bodemag	 Creates	the	Bode	magnitude	plot	of	a	system	model.	If	you	do	 >[mag, wout] = bodemag(SysIn)

76	 	 Stability	Analysis	in	the	Frequency	Domain	 	

Control Theory with MathScript Examples

not	specify	an	output,	this	function	creates	a	plot.	 >[mag, wout] = bodemag(SysIn, [wmin
wmax])
>[mag, wout] = bodemag(SysIn,
wlist)

margin	 Calculates	and/or	plots	the	smallest	gain	and	phase	margins	of	a	
single-input	single-output	(SISO)	system	model.	The	gain	margin	
indicates	where	the	frequency	response	crosses	at	0	decibels.	
The	phase	margin	indicates	where	the	frequency	response	
crosses	-180	degrees.	Use	the	margins	function	to	return	all	gain	
and	phase	margins	of	a	SISO	model.	

>num = [1]
>den = [1, 5, 6]
>H = tf(num, den)
margin(H)

margins	 Calculates	all	gain	and	phase	margins	of	a	single-input	
single-output	(SISO)	system	model.	The	gain	margins	indicate	
where	the	frequency	response	crosses	at	0	decibels.	The	phase	
margins	indicate	where	the	frequency	response	crosses	-180	
degrees.	Use	the	margin	function	to	return	only	the	smallest	
gain	and	phase	margins	of	a	SISO	model.	

>[gmf, gm, pmf, pm] = margins(H)

Example:	

Given	the	following	system:	

𝐻 𝑆 =
1

𝑠 𝑠 + 1 K	

We	will	find	the	crossover-frequencies	for	the	system	using	MathScript.	We	will	also	find	also	the	
gain	margins	and	phase	margins	for	the	system.	

We	get:	

	

77	 	 Stability	Analysis	in	the	Frequency	Domain	 	

Control Theory with MathScript Examples

Below	we	see	the	Bode	diagram	with	the	crossover-frequency	and	the	gain	margin	and	phase	margin	
for	the	system	plotted	in:	

	

[End	of	Example]	

Example:	

Given	the	following	system:	

𝐻 𝑠 =
𝑠 + 1

𝑠K − 𝑠 + 3
	

→	The	system	is	unstable	and	Frequency	Response	gives	meaning	only	for	stable	systems.	

Note!	The	frequency	response	of	a	system	is	defined	as	the	steady-state	response	of	the	system	to	
a	sinusoidal	input	signal.	 	

The	Bode	diagram	for	unstable	systems	don’t	show	what	happens	with	the	sinusoidal	signal	of	a	
given	frequency	when	the	system	input	is	transferred	through	the	system	because	it	never	reach	
steady	state.	

We	see	that	the	system	is	unstable	because	some	of	the	coefficients	in	the	denominator	polynomial	
𝑠K − 𝑠 + 3	 are	negative.	

78	 	 Stability	Analysis	in	the	Frequency	Domain	 	

Control Theory with MathScript Examples

We	confirm	this	by	some	simulations	and	finding	the	poles	for	the	system:	

poles(H)
pzgraph(H)

This	gives:	

	

→	We	see	the	poles	are	complex	conjugate	and	that	they	lies	in	the	right	half-plane.	

	

	

We	plot	the	step	response	for	the	transfer	function	using	the	step	function:	 	

num=[1,1];
den=[1,-1,3];
H=tf(num,den);
t=[0:0.01:10];
step(H,t);

This	gives	the	following	plot:	

79	 	 Stability	Analysis	in	the	Frequency	Domain	 	

Control Theory with MathScript Examples

	

→	We	see	the	system	is	unstable	

[End	of	Example]	

80	

	

Appendix	A	–	MathScript	
Functions	

Basic	Functions	
Here	are	some	descriptions	for	the	most	used	basic	MathScript	functions.	

Function	 Description	 Example	
help	 MathScript	displays	the	help	information	available	 >>help

help	
<function>	

Display	help	about	a	specific	function	 >>help plot

who,	whos	 who	lists	in	alphabetical	order	all	variables	in	the	currently	active	
workspace.	

>>who
>>whos

clear	 Clear	variables	and	functions	from	memory.	 >>clear
>>clear x

size	 Size	of	arrays,	matrices	 >>x=[1 2 ; 3 4];
>>size(A)

length	 Length	of	a	vector	 >>x=[1:1:10];
>>length(x)

format	 Set	output	format	

disp	 Display	text	or	array	 >>A=[1 2;3 4];
>>disp(A)

plot	 This	function	is	used	to	create	a	plot	 >>x=[1:1:10];
>>plot(x)
>>y=sin(x);
>>plot(x,y)

clc	 Clear	the	Command	window	 >>cls	

rand	 Creates	a	random	number,	vector	or	matrix	 >>rand
>>rand(2,1)

max	 Find	the	largest	number	in	a	vector	 >>x=[1:1:10]
>>max(x)

min	 Find	the	smallest	number	in	a	vector	 >>x=[1:1:10]
>>min(x)	

mean	 Average	or	mean	value	 >>x=[1:1:10]
>>mean(x)	

std	 Standard	deviation	 >>x=[1:1:10]
>>std(x)	

Basic	Plotting	Functions	
Function	 Description	 Example	
plot	 Generates	a	plot.	plot(y)	plots	the	columns	of	y	against	the	

indexes	of	the	columns.	
>X = [0:0.01:1];
>Y = X.*X;
>plot(X, Y)

figure	 Create	a	new	figure	window	 >>figure
>>figure(1)	

subplot	 Create	subplots	in	a	Figure.	subplot(m,n,p)	or	subplot(mnp),	
breaks	the	Figure	window	into	an	m-by-n	matrix	of	small	axes,	
selects	the	p-th	axes	for	the	current	plot.	The	axes	are	counted	
along	the	top	row	of	the	Figure	window,	then	the	second	row,	
etc.	

>>subplot(2,2,1)	

81	 	 Appendix	A	–	MathScript	Functions	 	

Control Theory with MathScript Examples

grid	 Creates	grid	lines	in	a	plot.	
“grid	on”	adds	major	grid	lines	to	the	current	plot.	
“grid	off”	removes	major	and	minor	grid	lines	from	the	current	
plot.	

>>grid
>>grid on
>>grid off	

axis	 Control	axis	scaling	and	appearance.	“axis([xmin	xmax	ymin	
ymax])”	sets	the	limits	for	the	x-	and	y-axis	of	the	current	axes.	

>>axis([xmin xmax ymin ymax])
>>axis off
>>axis on	

title	 Add	title	to	current	plot	
title('string')	

>>title('this is a title')	

xlabel	 Add	xlabel	to	current	plot	
xlabel('string')	

>> xlabel('time')

ylabel	 Add	ylabel	to	current	plot	
ylabel('string')	

>> ylabel('temperature')

legend	 Creates	a	legend	in	the	corner	(or	at	a	specified	position)	of	the	
plot	

>> legend('temperature')

hold	 Freezes	the	current	plot,	so	that	additional	plots	can	be	overlaid	 >>hold on
>>hold off

For	more	information	about	the	plots	function,	type	“help	plots”.	

Functions	used	for	Control	and	Simulation	
Function	 Description	 Example	

plot	 Generates	a	plot.	plot(y)	plots	the	columns	of	y	against	the	
indexes	of	the	columns.	

>X = [0:0.01:1];
>Y = X.*X;
>plot(X, Y)

tf	 Creates	system	model	in	transfer	function	form.	You	also	can	
use	this	function	to	state-space	models	to	transfer	function	
form.	

>num=[1];
>den=[1, 1, 1];
>H = tf(num, den)

poles	 Returns	the	locations	of	the	closed-loop	poles	of	a	system	
model.	

>num=[1]
>den=[1,1]
>H=tf(num,den)
>poles(H)

tfinfo	 Returns	information	about	a	transfer	function	system	model.	 >[num, den, delay, Ts] =
tfinfo(SysInTF)

step	 Creates	a	step	response	plot	of	the	system	model.	You	also	can	
use	this	function	to	return	the	step	response	of	the	model	
outputs.	If	the	model	is	in	state-space	form,	you	also	can	use	this	
function	to	return	the	step	response	of	the	model	states.	This	
function	assumes	the	initial	model	states	are	zero.	If	you	do	not	
specify	an	output,	this	function	creates	a	plot.	

>num=[1,1];
>den=[1,-1,3];
>H=tf(num,den);
>t=[0:0.01:10];
>step(H,t);

lsim	 Creates	the	linear	simulation	plot	of	a	system	model.	This	
function	calculates	the	output	of	a	system	model	when	a	set	of	
inputs	excite	the	model,	using	discrete	simulation.	If	you	do	not	
specify	an	output,	this	function	creates	a	plot.	

>t = [0:0.1:10]
>u = sin(0.1*pi*t)'
>lsim(SysIn, u, t)

Sys_order1	 Constructs	the	components	of	a	first-order	system	model	based	
on	a	gain,	time	constant,	and	delay	that	you	specify.	You	can	use	
this	function	to	create	either	a	state-space	model	or	a	transfer	
function	model,	depending	on	the	output	parameters	you	
specify.	

>K = 1;
>tau = 1;
>H = sys_order1(K, tau)

Sys_order2	 Constructs	the	components	of	a	second-order	system	model	
based	on	a	damping	ratio	and	natural	frequency	you	specify.	You	
can	use	this	function	to	create	either	a	state-space	model	or	a	
transfer	function	model,	depending	on	the	output	parameters	
you	specify.	

>dr = 0.5
>wn = 20
>[num, den] = sys_order2(wn, dr)
>SysTF = tf(num, den)
>[A, B, C, D] = sys_order2(wn, dr)
>SysSS = ss(A, B, C, D)

damp	 Returns	the	damping	ratios	and	natural	frequencies	of	the	poles	
of	a	system	model.	

>[dr, wn, p] = damp(SysIn)

pid	 Constructs	a	proportional-integral-derivative	(PID)	controller	
model	in	either	parallel,	series,	or	academic	form.	Refer	to	the	
LabVIEW	Control	Design	User	Manual	for	information	about	
these	three	forms.	 	

>Kc = 0.5;
>Ti = 0.25;
>SysOutTF = pid(Kc, Ti,
'academic');

conv	 Computes	the	convolution	of	two	vectors	or	matrices.	 >C1 = [1, 2, 3];
>C2 = [3, 4];
>C = conv(C1, C2)

82	 	 Appendix	A	–	MathScript	Functions	 	

Control Theory with MathScript Examples

series	 Connects	two	system	models	in	series	to	produce	a	model	
SysSer	with	input	and	output	connections	you	specify	

>Hseries = series(H1,H2)

feedback	 Connects	two	system	models	together	to	produce	a	closed-loop	
model	using	negative	or	positive	feedback	connections	

>SysClosed = feedback(SysIn_1,
SysIn_2)

ss	 Constructs	a	model	in	state-space	form.	You	also	can	use	this	
function	to	convert	transfer	function	models	to	state-space	
form.	

>A = eye(2)
>B = [0; 1]
>C = B'
>SysOutSS = ss(A, B, C)

ssinfo	 Returns	information	about	a	state-space	system	model.	 >A = [1, 1; -1, 2]
>B = [1, 2]'
>C = [2, 1]
>D = 0
>SysInSS = ss(A, B, C, D)
>[A, B, C, D, Ts] = ssinfo(SysInSS)

pade	 Incorporates	time	delays	into	a	system	model	using	the	Pade	
approximation	method,	which	converts	all	residuals.	You	must	
specify	the	delay	using	the	set	function.	You	also	can	use	this	
function	to	calculate	coefficients	of	numerator	and	denominator	
polynomial	functions	with	a	specified	delay.	

>[num, den] = pade(delay, order)
>[A, B, C, D] = pade(delay, order)

bode	 Creates	the	Bode	magnitude	and	Bode	phase	plots	of	a	system	
model.	You	also	can	use	this	function	to	return	the	magnitude	
and	phase	values	of	a	model	at	frequencies	you	specify.	If	you	
do	not	specify	an	output,	this	function	creates	a	plot.	

>num=[4];
>den=[2, 1];
>H = tf(num, den)
>bode(H)

bodemag	 Creates	the	Bode	magnitude	plot	of	a	system	model.	If	you	do	
not	specify	an	output,	this	function	creates	a	plot.	

>[mag, wout] = bodemag(SysIn)
>[mag, wout] = bodemag(SysIn, [wmin
wmax])
>[mag, wout] = bodemag(SysIn,
wlist)

margin	 Calculates	and/or	plots	the	smallest	gain	and	phase	margins	of	a	
single-input	single-output	(SISO)	system	model.	The	gain	margin	
indicates	where	the	frequency	response	crosses	at	0	decibels.	
The	phase	margin	indicates	where	the	frequency	response	
crosses	-180	degrees.	Use	the	margins	function	to	return	all	gain	
and	phase	margins	of	a	SISO	model.	

>num = [1]
>den = [1, 5, 6]
>H = tf(num, den)
margin(H)

margins	 Calculates	all	gain	and	phase	margins	of	a	single-input	
single-output	(SISO)	system	model.	The	gain	margins	indicate	
where	the	frequency	response	crosses	at	0	decibels.	The	phase	
margins	indicate	where	the	frequency	response	crosses	-180	
degrees.	Use	the	margin	function	to	return	only	the	smallest	
gain	and	phase	margins	of	a	SISO	model.	

>[gmf, gm, pmf, pm] = margins(H)

For	more	details	about	these	functions,	type	“help	cdt”	to	get	an	overview	of	all	the	functions	used	
for	Control	Design	and	Simulation.	For	detailed	help	about	one	specific	function,	type	“help	
<function_name>”.	

	

	

	

	

	

Hans-Petter	Halvorsen,	M.Sc.	
	

E-mail:	hans.p.halvorsen@hit.no	

Blog:	http://home.hit.no/~hansha/	

	

	

University	College	of	Southeast	Norway	

www.usn.no	

	

